Что такое сериализация и десериализация? Как используется в машинном обучении?
В контексте хранения данных, сериализация — это процесс перевода структур данных в формат для их хранения и передачи. Десериализация — обратный процесс, восстановление данных из этого формата в исходный вид.
В машинном обучении можно сохранять обученные модели на диске или передавать их по сети, а затем использовать для прогнозирования на новых данных. Чтобы это проделать, пригодятся сериализация и десериализация.
Для этой задачи подойдёт, например, модуль pickle в Python. Вот как можно его использовать:
# сериализуем with open('model.pickle', 'wb') as wf: pickle.dump(model, wf) # десериализуем модель with open('model.pickle', 'rb') as rf: model_out = pickle.load(rf)
Что такое сериализация и десериализация? Как используется в машинном обучении?
В контексте хранения данных, сериализация — это процесс перевода структур данных в формат для их хранения и передачи. Десериализация — обратный процесс, восстановление данных из этого формата в исходный вид.
В машинном обучении можно сохранять обученные модели на диске или передавать их по сети, а затем использовать для прогнозирования на новых данных. Чтобы это проделать, пригодятся сериализация и десериализация.
Для этой задачи подойдёт, например, модуль pickle в Python. Вот как можно его использовать:
# сериализуем with open('model.pickle', 'wb') as wf: pickle.dump(model, wf) # десериализуем модель with open('model.pickle', 'rb') as rf: model_out = pickle.load(rf)
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Библиотека собеса по Data Science | вопросы с собеседований from tw